If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=125
We move all terms to the left:
7x^2-(125)=0
a = 7; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·7·(-125)
Δ = 3500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3500}=\sqrt{100*35}=\sqrt{100}*\sqrt{35}=10\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{35}}{2*7}=\frac{0-10\sqrt{35}}{14} =-\frac{10\sqrt{35}}{14} =-\frac{5\sqrt{35}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{35}}{2*7}=\frac{0+10\sqrt{35}}{14} =\frac{10\sqrt{35}}{14} =\frac{5\sqrt{35}}{7} $
| 2(-4x)=30-(-2) | | 5(3+2x)=255(3+2x)=25 | | 24+10v=4v-18 | | 7(x-8)=6(1+x) | | 5a^2-13a=-8 | | 6h-8=2(h+6) | | 3x+-2x=1+(-3) | | 6h-8=2(h+6 | | 3y+6=-3(-y+2) | | 6-z/8+8=32-22 | | 3x+-8x=-16-4 | | C=5n+40/9 | | 2x(x+1)+2(x+1)=0 | | 3/n=12/24 | | 3+18a-a+11-7a=6a+1+3a+9+5a | | 2(-3x)=4+14 | | x−2/3=−1/3 | | 2x2–12=116 | | 4(-3x)=-6 | | 2/5k-12=16 | | x2=150 | | x−23=−1/3 | | 4/5x-2/5=10 | | 5(1+y)^2+2y+y^2+2y^2=53 | | x−2/3=−13 | | 3(2x)=50+(-2) | | x/7-x=2 | | (7x-21)/3=0 | | 2x^2-3x=-4x | | 9x+5=4x+7 | | 10p=3p-21 | | (2x+2)^12=x-3 |